
154

KEYWORDS

Object-oriented models, hybrid simulation, interactive
simulation, model design, software engineering, Java, web-
based simulation.

ABSTRACT

Modeling and simulating complex systems for explorative
purposes is indispensable in research and teaching. Such
activity can greatly benefit from a middle-ground tool that is
more specific than universal programming languages on the
one hand, and more general than modeling tools devoted to a
distinct model type on the other. Such a tool could provide
good support for simulation specific tasks while facilitating
the integration of different model types. Advances in software
technology help strike that middle ground. The VSEit
simulation framework extends standard object-oriented
concepts to support simulation control, flexible editing of
model structure, data sampling and output display. The
working of these concepts is illustrated by two examples.

1 LOOKING FOR A MIDDLE-GROUND 
SIMULATION TOOL

Building and simulating models is indispensable for research
and teaching. But it is a rare person who can be all: a good
scientist, teacher, and programmer. In fact, a common adage
says that “building simulation models often turns good
scientists into bad programmers.”

Scientists typically deal with this dilemma in one of two
ways. Either they team up with software developers to create
case-specific simulation programs, or they employ one of the
high-level modeling tools for specific types of simulation
models, like Stella for systems dynamics models (http://www.
hps-inc.com/edu/stella/stella.html), SimProcess for queuing
systems (http://www.caciasl.com/simprocess.cfm), or
AgentSheets for simple agent-based models (Repenning and
Ioannidou 2000).

Both can be limiting. The first approach seems to afford
the scientist a maximum degree of freedom and flexibility for
realizing her ideas – at least in principle. In practice, however,
developing a model and making changes tends to be
cumbersome and time-intensive. In the second case, the

scientist restricts herself to a specific class of model; when
she wants to try out a different model type, she will have to
switch to another tool. This makes it especially difficult to
link models of different types and problem domains (e.g., a
hydrology model representing the water cycle in a river basin
with an agent-based model of the people using the basin’s
natural resources).

But it need not be like this. Not only did breath-taking
advances in processing speed, memory capacity, and
communication facilities dramatically improve our hardware
capabilities to perform simulations. The past few years have
also seen great advances in software technology. They allow
us to strike a better balance between the two approaches,
enabling people who are not proficient programmers to still
develop adequate, well-structured, and efficient computer
simulations without being restricted to a specific model class.

This paper presents some advances in object-oriented
technology, as embodied in the Java-based VSEit simulation
framework (Versatile Simulation Environment for the
internet, pronounced as “use-it”). A first version of VSEit
was created while the author was working as a computer
scientist in a team of economists and sociologists on
simulation models of environmental policies. The
development of the VSEit framework benefited from the
close contact to domain experts and students, both of whom
were avid users who provided valuable feedback on the
design of the software.

We first discuss requirements for tools to support
explorative modeling and simulation of complex domains
(section 2), then demonstrate how advanced object-oriented
concepts can be exploited when implementing such a tool
(section 3), and illustrate the working of VSEit with two
examples (section 4). We also offer some conclusions
(section 5).

2 WHAT WE WANT FROM A SIMULATION TOOL

This section contains a wish list of features that we would
want a simulation tool to have. The list is not meant to be
exhaustive; rather, it reflects the experience of researchers
engaged in explorative modeling of complex real-world
processes, as is necessary for policy modeling and integrated
assessment.

ADVANCED OBJECT-ORIENTED TECHNOLOGIES
IN MODELING AND SIMULATION: THE VSEit FRAMEWORK

Kai-H. Brassel
Department of Sociology

Technical University of Darmstadt
Residenzschloss

D-64283 Darmstadt, Germany
E-mail: brassel@vseit.de

Paper presented at ESM 2001 – European Simulation Multiconference 2001
Prague, Czech Republic, June 6-9, 2001

http://www.caciasl.com/simprocess.cfm
http://www.hps-inc.com/edu/stella/stella.html
http://www.hps-inc.com/edu/stella/stella.html


155

Scope. The most fundamental property of a simulation tool
may be its scope, that is, the set of simulations that it is
potentially able to execute. Figure 1 indicates the scopes of
different software applications. There are many tools
designed for simulating a specific type of model, like systems
dynamics models or cellular automata. These tools may give
very good support for the purpose they are designed for, but
they tend to be too restrictive for explorative modeling and
simulation of complex domains. This is for two reasons: First,
the very complexity of the target system often calls for
combining different modeling approaches within one
simulation model. Second, explorative modeling implies that
the model’s type and structure is not known beforehand, but
evolves, step by step, during the modeling process. As a
result, it may be necessary to invent new classes of simulation
models “on the fly.”

At the other end of the spectrum, we have numerous
universal programming languages and development
environments supporting the implementation of any
application, including computer simulations of all kinds.
What these tools necessarily are missing is simplicity and
special support of those features that are common to all
simulation programs, such as model initialization or display
of simulation results.

Before we present the ideas embodied in the VSEit
approach for striking the middle ground between high-level
simulation tools and universal programming languages, let us
discuss, in the remainder of this section, some requirements
that a tool for modeling complex systems in an explorative
setting should satisfy.

Complexity. Truly complex domains exhibit both structural
and temporal complexity. Structural complexity is due to the
presence of many model objects, usually of different types,
connected by different types of relationships, and placed at
different levels of the system’s hierarchy. Temporal
complexity results from the existence of more or less
independent (concurrent) processes, e.g. autonomous agents
pursuing their individual goals in a common environment. A
tool for simulating complex systems should provide powerful
capabilities for designing and implementing complex
structures (e.g. a type-based network editor) and processes (e.
g. an efficient event scheduler).

The simulation tool has to meet even greater challenges
when one wants to let substructures of a model be generated
or modified by simulated processes or, vice versa, let specific
substructures control the execution of a process. In the first
case, the simulation tool must be able to deal with variable
structure models (Uhrmacher and Zeigler 1996), i.e. models
with a variable number of objects (maybe due to birth and
death processes) and changing relationships between objects.
In the second case, the user may provide or modify parts of
the model structure in order to specify certain aspects of the
model’s behavior, not via program code at compile time, but
during model initialization or even while the simulation is
running. The simulation of intelligent agents, by the way,
requires both: The acquisition of new (cognitive) structures
through on-line learning and the on-line interpretation of
those structures for performing actions.

As we will see below, a carefully designed simulation tool
may indeed be able to support modeling and simulation of all
these facets of complexity.

Exploration. Following Troitzsch (1997), explorative
modeling and simulation serves to build an understanding of
the principle behavior and functioning of a target system,
rather than making exact predictions about its future states.
An explorative mode of inquiry is particularly well supported
by tools with comprehensive communication capabilities.
These include a modern graphical user interface (GUI)
allowing for interactive model initialization and simulation
control as well as for the animation of model objects, flexible
data sampling and output, and, last not least, a user-friendly
model documentation.

The advantages of web-based simulation models for the
communication between modelers and model users are
obvious. Web-based models are platform-independent and
can easily be shared around the globe. This affords
transparency and accessibility which is especially important
when models are used to support policy analysis. For the
same reasons, the modeling language of a tool should be as
adequate and expressive as possible. Model code should be
easy to create, understand, and maintain.

3 EXPLOITING ADVANCED OBJECT-ORIENTED 
TECHNOLOGIES FOR MODELING AND 
SIMULATION

Among all universal approaches to software development,
indicated by the outmost oval in Figure 1, object-oriented
languages, concepts, and tools are commonly recognized to
be quite well suited for developing computer simulations.
This is mainly because they employ concepts like “object,”
“class,” “inheritance,” and “message” that often correspond
directly to the way in which we view things in a real-world
target domain. The goal pursued with the development of
VSEit was to add support for modeling and simulation in
general with a special emphasis on explorative modeling of
complex domains. In this section, we discuss how some
advanced object-oriented technologies did help us to achieve

Figure 1: Simple Topology of Software Applications

Word

Cellular

Simulation
Programs

Automata

Queuing
Systems

Systems
Dynamics

Software
Applications

...

...

Processors

Web
Browsers



156

this goal. The subsequent section illustrates how this looks in
practice.

3.1 Representation and Editing of Complex Model 
Structures: VSEit’s Network Editor

An important part of the VSEit framework is the Network
Editor, which graphically represents the model objects and
their relationships, and which allows modelers and model
users to manipulate objects and edit model structure. Objects
are given graphical symbols which appear on screen. With a
simple mouse click, objects can be created and accessed for
editing. Likewise, relationships that are represented by lines
or arrows connecting the object-shapes can be created and
edited this way. See Section 4.2 for an illustration.

The Network Editor relies on an enhancement of standard
object-oriented semantics. It introduces an enriched concept
of “object” and “class”. Leaning on data base terminology,
we call the enriched object concept “entity,” and the enriched
class concept “entity type.” Each object in the model has one
entity assigned to it. The entity is like an alter ego of the
object that fulfils two functions: It internally represents the
enhanced semantics of model objects (“attributes” and
“roles,” explained below). Also, it organizes the user’s
interaction with the object in the Network Editor and keeps
track of all changes in the object’s state, performs updates
accordingly and thereby supports animation.

The new concepts of “entity” and “entity type” rely, in
turn, on enriched concepts for “instance variable” and “object
reference.” These are called “attribute” and “role,”
respectively. They are more powerful and versatile than their
standard counterparts, especially for modeling tasks.
Attributes allow for a more intuitive and comprehensive
description of an object’s state. They accommodate:

• multiplicity (how many values are allowed or
required for the attribute),

• explicit handling of missing values,
• specification of valid values,
• explicit annotation of data units.

Likewise, roles accommodate multiplicity and explicit
handling of missing values. In addition, they allow for the
distinction between directed and undirected relationships,
ensuring consistency of references over the entire network at
each point in time.

From a technical point of view, it was important to
integrate these enhanced static semantics into the standard
class concept, thus preserving the possibility to attach
arbitrary behavior to the entities by defining methods in the
usual fashion, including inheritance. A seamless integration
was achieved by utilizing the advanced feature of
“reflection,” that is, the ability of an application to inspect its
program while it is running and subsequently process
information about its classes, variables and methods. Java’s
application programmers interface (API) for coding reflective
operations has become more sophisticated with recent
versions. However, a careful usage of this mechanism is
called for, to avoid too big an overhead in runtime.

3.2 Handling of Concurrent Processes

Modern programming platforms usually enable application
programmers to implement concurrent processes. Java, for
instance, provides threads that are simple to use and well
suited for most programming tasks. Employing threads,
VSEit is capable of executing many runs of a simulation
model in parallel with one thread for each run, plus one extra
thread for managing the GUI. However, implementing model
processes by means of threads is problematic. Since threads
are scheduled by the runtime environment, their timing, and
thus, the whole simulation, usually is not reproducible.

In order for the simulation environment to retain fine-
grained control over the scheduling of events, including the
reproducible solution of conflicts by a pseudo-random
number generator, it has to provide its own scheduler. The
efficient implementation of such a scheduler, as realized in
the VSEit framework, requires that executable code is stored
within an event queue for delayed execution. “No big deal,”
anyone will say who knows Lisp expressions, Smalltalk code
blocks, or C function pointers. But note that these are
inherently unsafe and therefore should not be used for web-
based simulation. Java, on the other hand, is type-safe. But
this implies that the only place for storing executable code is
a class. Coding every potential model event as a full-fledged
class would make the model code quite unreadable. Java,
since version JDK 1.1, provides a special syntax to address
this problem, labelled “inner classes.” With this special
notation, modelers elegantly can bind chunks of model code
to arbitrary objects without loss of safety and type
information.

3.3 Data Sampling and Output

Since the early days of Smalltalk, the so-called Model-View-
Controller (MVC) design pattern is the basis for most object-
oriented implementations of interactive GUIs. This is also the
case with the VSEit framework, whose rich output facilities
include dynamic plotting of time series and other charts, as
well as animation of model entities and relationships.
However, some of the specific requirements for explorative
modeling deserve special attention.

One is the handling of variable structure models. In those
models, entities may be created or destroyed in the course of
the simulation (see section 4.2 for an illustration). To allow
for data about such transient entities to be gathered and
interactively displayed, the classic MVC approach had to be
made more dynamic. Once this is done, it also becomes
possible to let the user decide, during a simulation run, for
which of the various entities in the model data shall be
sampled and displayed. For example, in an agent-based
model, the user can, upon observing the fate of some agents,
begin to check what is going on with other agents. This is
very useful for exploring the behavior of complex simulation
models.

Another requirement, not easy to satisfy, is to improve the
readability of the model code by separating all data-related



157

aspects from describing the model’s structure and behavior.
Intuitively, the most transparent approach would be to
encapsulate data definitions and data sampling methods
within special (data) classes. Putting this intuition into
practice required the design of a generic and efficient
interface between those classes and the output windows that
display the instances of those classes (i.e. data records).
Implementing this interface greatly profited from Java’s
reflection API that allows the running application to
determine what instance variables are defined in a data class.

3.4 Miscellaneous Benefits Due to Recent Enhancements 
of the Java Platform

Since its introduction in 1995, the Java computing platform,
that is the programming language together with several APIs
and development tools, has evolved rapidly. The high
frequency of new releases certainly caused some problems
while developing the VSEit framework, since it had to be re-
implemented several times. On the other hand, the Java
platform seems to have matured by now. Moreover, several of
the recent improvements are especially useful for addressing
the requirements for a simulation tool, as formulated in
section 2.

One major addition to the Java platform was the “Swing”
framework for implementing professional GUIs. Besides
improving the look-and-feel of a Java application or applet, it
provides practical features like tool-tips that can be attached
to all interface elements and help the user to understand the
application. Swing also facilitates the implementation of
custom windowing systems. Since simulation programs tend
to be quite “window intensive,” it is always a good idea to
provide special support for window manipulation (for the
model user’s benefit) and for implementing custom types of
windows (for the modeler’s benefit).

Since VSEit simulations are web-based, it is only natural
that HTML files be used for model documentation. Enhanced
text processing capabilities of the Java platform allow the
display of HTML documents within an application. That way,
the user can easily switch from a simulation run to the
relevant parts of the model documentation or, vice versa,
execute a new run from within the documentation.

With the 2D Graphics API, Java provides a
comprehensive tool box for creating all kinds of drawings.
VSEit exploits this feature, for instance by allowing the
modeler to define arbitrary geometric shapes to represent
model entities in the Network Editor. Utilizing the 2D
Graphics API, these shapes can very easily be scaled in size
or otherwise be transformed – a feature very helpful for
animating model entities.

Besides the “Math” class that implements the common
arithmetic operations, newer Java versions also come with a
class called “StrictMath”. This is used throughout VSEit
because it guarantees total, that is bitwise, reproducibility of
arithmetic operations, including floating point operations and
generation of pseudo-random numbers, regardless of what
hardware and operation system is in use. Only this nice

feature makes simulation runs truly reproducible “around the
globe.”

The overhauled Collections API of Java provides a well-
sorted library of ready-made data structures like Lists, Sets,
Hashtables, and so on. It even contains a generic method
called “shuffle” that rearranges the objects in a given list
randomly, a function often used by simulations to avoid
implementation artefacts.

Last, not least, many powerful integrated development
environments for Java were made available over the past few
years, some free of charge. They provide advanced features
like automatic code completion or the creation of classes
from templates, which are especially helpful for occasional
users, like VSEit modelers might be. 

4 ILLUSTRATION: TWO APPLICATIONS

About a dozen simulation models were implemented within
the VSEit framework up to April 2001. They include systems
dynamics models of ecological and economic development,
multi-level models and irregular cellular automata illustrating
opinion formation processes, variable structure models of
firm behavior and technological change, and some
experimental multi-agent simulations. 

This section presents two VSEit models to illustrate the
working and versatility of that tool. Both models were
originally implemented with other tools, also aiming at the
middle ground between high-level simulation systems and
universal programming languages. Comparing different
implementations of the same models will provide first
insights about the performance of VSEit. Source code and
executable JAR-files for the example models are available at
“http://www.vseit.de” in the World Wide Web.

4.1 Heatbugs

This model has already been implemented as a demo
application of the SWARM simulation toolkit (Swarm
Development Group 2000). The theme is a population of
bugs, each characterized by an “output heat,” specifying the
amount of heat it radiates, and an “ideal temperature,” that is
the outside temperature it prefers most. These bugs are
superimposed on a cellular automaton called the “heat space,”
which regulates heat diffusion. The bugs radiate the heat to
the cell on top of which they are sitting, from which it
diffuses to surrounding cells according to a diffusion
constant. There is also some “heat evaporation.” The bugs
move along the automaton, one cell at a time, in search for
their ideal temperature. Thus, this model can be considered as
a combination of a cellular automaton with simple agents.
Figure 2 presents a snapshot of the GUI after VSEit has
executed a typical Heatbugs simulation for 162 time steps.

The main window of the simulation is dominated by the
Network Editor. It shows model entities of different types on
the left and the current attribute values of a selected entity (in
this case a heat bug) on the right. Note that the bugs are not
simple blobs on the display, but individually selectable

http://www.vseit.de


158

entities. The user may select one or more bugs for better
tracking their movements or even to manually shift them to
another position and watch how they react. Since bugs are
represented as true model entities, it would also be simple to
enhance the model by introducing non-local relationships
between bugs and displaying them as links, just like Epstein
and Axtell (1996, p. 81) did in their Sugerscape model.

If you look carefully, you will notice that bugs are
displayed in different shades. The brighter a bug, the higher
its ideal temperature. Altering a bug’s ideal temperature,
manually or by simulation, instantly triggers an update of its
brightness.

The bugs’ common environment, the heat space, is
implemented as a specific type of model entity, too (see
Brassel et al. 1997 on a discussion about different notions of
“environment” in multi-agent models). Thus, it would be easy
to insert additional heat spaces, if model design required it.
The attributes of a heat space specify its dimension, i.e. the
number of horizontal and vertical cells making up the space,
the extension of the cells, the diffusion constant, and the
evaporation rate. The modeler controls which attribute values
a model user might change at runtime, and which not. In the
Heatbugs model, for instance, allowing the cells’ extension to
be changed at runtime makes sense, as it lets the model user
adjust the display, while changing the dimension of a heat
space is only allowed during model initialization.

The VSEit version of a model with 100 heat bugs
distributed in a 80 times 80 cell heat space runs smoothly on a
500 MHz Pentium PC. However, with all animation features
switched on, it runs about three times more slowly than the
SWARM implementation. This is not a bad result,
considering that the Java code is interpreted for execution,
while the SWARM code was compiled by a native compiler.
Since graphical output and animation are the most greedy
consumers of computing time, performance can be improved
instantly by hiding some of the heat bugs or increasing the
update interval. If speed still matters and remote execution
via web-browsers is not intended, the VSEit model may of
course also be compiled by a native Java compiler generating
a comparably fast executable file.

As for model specification, the VSEit version is much
more compact and readable than its SWARM counterpart.
This is remarkable, since the former permits a higher degree
of interactivity, and specifies the cellular automaton and its
diffusion process explicitly, while the latter delegates this part
of the simulation to specific library classes. Having said that,
the author acknowledges that such a judgement is necessarily
subjective. Therefore, the reader is invited to judge for
himself by looking at the model’s source codes located at
“http://www.vseit.de/de/vseit/examples/heatbugs” and “http:/
/www.swarm.org/release-apps.html”, respectively.

Figure 2: Heatbugs Simulation Model Implemented with VSEit

http://www.vseit.de/de/vseit/examples/heatbugs
http://www.swarm.org/release-apps.html
http://www.swarm.org/release-apps.html


159

4.2 Greening Investors

The Greening Investors model was built to reproduce some of
the stylized facts that can be observed around the processes of
invention, innovation, and diffusion of new technologies in an
economy. The model was designed by stepwise refinement,
starting with a macro-model of two competing production
technologies (representing diffusion), introducing, in a
second step, an unlimited reservoir of new technologies

(invention), and ending up with a multi-level model, where
firms explicitly choose to adopt a new technology
(innovation). This set of models was originally implemented
using the MIMOSE environment (Möhring 1996). For a
detailed model description, including MIMOSE code, see
Brassel et al. (2000).

Figure 3 shows a Greening Investors simulation run as
executed in the VSEit framework. The Network Editor

contains a series of rectangles, each representing one of the
technologies that are available at the current time step. A
technology is characterized by its labor and energy
productivity, both displayed as floating point numbers. From
time to time, a new technology is added randomly, according
to a Poisson distribution. Following given trend parameters,
new technologies will on average be more efficient than older
ones.

The circles below the technologies represent individual
firms. Each firm is linked to the technology that it currently
uses for production. Firms utilizing more efficient
technologies than their competitors experience a greater
output growth. Since the size of the circles is proportional to a
firm’s output, some of them will grow over time, while others
will shrink. Firms that fall below a threshold start looking for
a better technology. They are modeled to differ in their
preference for energy and labor productivity (a feature that
departs from conventional economic analysis). As soon as a

new technology that suits such a firm’s preference is
available, its link is redirected to that new technology,
indicating an innovation.

Note that production and innovation on the one hand, and
invention on the other, are modeled as concurrent
(independent) processes.

The chart titled “Long Waves” illustrates the working of
the advanced data sampling and output facilities of VSEit, as
discussed in section 3.3. It shows the rise and fall of
technologies by plotting the sum of all goods produced with
one technology over time. Whenever a new technology is
created during a simulation run, a new curve is inserted
automatically.

Since MIMOSE provides a functional language especially
designed for multi-level-modeling, the specification of the
Greening Investors model in that tool is much more compact
than the VSEit version. However, implementing the dynamics

Figure 3: Snapshot of a Greening Investors Simulation Run



160

of the invention process turned out to be somewhat
complicated in MIMOSE, since the creation of new model
objects is not directly supported. 

Compared to VSEit, MIMOSE runs about ten times more
slowly, and that even though animation of model objects is
not supported. Especially when models become more
complex, as is the case with Greening Investors, display and
animation of model objects and structure is very helpful for
understanding the model’s dynamics and for detecting logical
errors.

5 CONCLUSIONS

Experience with re-implementing the Heatbugs and the
Greening Investors simulation models indicates that the
VSEit framework constitutes a good compromise between
universal programming languages on the one hand and
specific simulation tools on the other. The utilization of
advanced object-oriented concepts and technologies did help
to strike that middle-ground and also allowed the
implementation of features that are especially useful for the
explorative modeling of complex domains.

The enhancement of the standard object-oriented concepts
“object,” “class,” “instance variable,” and “object reference”
was the basis for creating a powerful Network Editor that
supports initialization and animation of model “entities” as
well as model structure. By defining suitable types of entities
and relationships, VSEit becomes a generic tool for the
graphical definition of models belonging to different specific
model classes. Being implemented in the same environment,
models of different classes could easily be integrated, at least
from a technical point of view. See Peters and Brassel (2000)
for a proposal of such a hybrid model class that could be
applied to economic policy analysis.

Despite VSEit’s capability to produce highly complex and
easy-to-handle simulations, developing a new simulation
model, or even inventing a new model class, only requires
moderate programming skills. Of course, quality of
documentation is crucial in this respect.

Analysis and testing of the VSEit framework show that its
simulations are time and space efficient. In part, this is due to
a cautious application of time consuming mechanisms like
reflection.

Java as a simulation platform has more to offer than is
suggested by the numerous simulation applets developed ad
hoc that can be found in the World Wide Web. This is mainly
due to recent enhancements of the Java platform.

Certainly, a more systematic assessment of the strengths
and weaknesses of the proposed architecture and the VSEit
framework would be desirable. We also intend to provide
building blocks for more challenging model classes in the
near future, e.g. to implement intelligent behavior based on
decision networks or re-enforcement learning. New versions
of the VSEit framework will support distributed simulation
and gaming as well as the specification and analysis of
simulation experiments.

ACKNOWLEDGEMENTS

I am very grateful to Irene Peters for her encouragement,
many fruitful discussions, and valuable comments on several
versions of the draft. I thank Michael Möhring for clarifying
comments.

REFERENCES

Brassel, K.-H. 1996. “Erfahrungen mit der objektorientierten
Implementierung komplexer Modelle.” In MASSIM-96 –
Multiagent Systems and Simulation Workshop (Ulm, Germany,
March 5-6). ASIM Communications, Vol. 53.

Brassel, K.-H.; O. Edenhofer; M. Möhring; and K.G. Troitzsch.
2000. “Modelling Greening Investors: Economic Development,
Opinion Formation, and Technological Change in a Multilevel
Simulation Model.” In Tools and Techniques for Social Science
Simulation, R. Suleiman, K.G. Troitzsch, and N. Gilbert (Eds.).
Physica, Heidelberg, 317-343.

Brassel, K.-H.; M. Möhring; E. Schumacher; and K.G. Troitzsch.
1997. “Can Agents Cover All the World?” In Simulating Social
Phenomena, R. Conte, R. Hegselmann, and P. Terna (Eds.).
Springer, Berlin, 55-72.

Epstein, J.M. and R. Axtell. 1996. Growing Artificial Societies –
Social Science from the Bottom Up. MIT Press.

Flanagan, D. 1997. Java in a Nutshell. 2nd ed., O’Reilly.
Gilbert, N. and K.G. Troitzsch. 1999. Simulation for the Social

Scientist. Open University Press.
Minar, N.; R. Burkhart; C. Langton; and M. Askenasi. 1996. “The

Swarm Simulation System: A Toolkit for Building Multi-Agent
Simulations.” Santa Fe Institute, http://www.swarm.org/intro-
papers.html.

Möhring, M. 1996. “Social Science Multilevel Simulation with
MIMOSE.” In Social Science Microsimulation, K.G. Troitzsch,
U. Mueller, N. Gilbert, and J.E. Doran (Eds.). Springer, Berlin,
123-137.

Peters, I. and K.-H. Brassel. 2000. “Integrating Computable General
Equilibrium Models and Multi-Agent Systems – Why and How.”
In 2000 AI, Simulation and Planning In High Autonomy Systems,
H.S. Sarjoughian et al. (Eds.). SCS, 27-35.

Repenning, A. and A. Ioannidou. 2000. “AgentSheets: End-User
Programmable Simulations.” Journal of Artificial Societies and
Social Simulation 3, No. 3, http://www.soc.surrey.ac.uk/
JASSS/3/3/forum/1.html.

Swarm Development Group 2000. “Documentation Set for Swarm.”
http://www.swarm.org/release-docs.html.

Troitzsch, K.G. 1997. “Social Science Simulation – Origins,
Prospects, Purposes.” In Simulating Social Phenomena, R. Conte,
R. Hegselmann, and P. Terna (Eds.). Springer, Berlin, 41-54.

Uhrmacher, A.M. and B.P. Zeigler. 1996. “Variable Structure
Modelling in Object-Oriented Simulation.” International Journal
on General Systems 24, No. 4, 359-375.

http://www.swarm.org/intro-papers.html
http://www.swarm.org/intro-papers.html
http://www.soc.surrey.ac.uk/JASSS/3/3/forum/1.html
http://www.soc.surrey.ac.uk/JASSS/3/3/forum/1.html
http://www.swarm.org/release-docs.html

	Keywords
	Abstract
	1 Looking for a Middle-Ground Simulation Tool
	2 What We Want from a Simulation Tool
	3 Exploiting Advanced Object-Oriented Technologies for Modeling and Simulation
	3.1 Representation and Editing of Complex Model Structures: VSEit’s Network Editor
	3.2 Handling of Concurrent Processes
	3.3 Data Sampling and Output
	3.4 Miscellaneous Benefits Due to Recent Enhancements of the Java Platform

	4 Illustration: Two Applications
	4.1 Heatbugs
	4.2 Greening Investors

	5 Conclusions
	Acknowledgements
	References

